NEOMAX[®] 異方性リング磁石のモーターへの適用

Motor Application of NEOMAX® Nd-Fe-B Anisotropic Ring Magnets

丸川 泰弘* Yasuhiro Marukawa

久村 剛之* Tsuyoshi Hisamura

天野 寿人* Hisato Amano

蒲池 政直* Masanao Kamachi

吉田 健志* Takeshi Yoshida

* 日立金属株式会社 磁性材料カンパニー Magnetic Materials Company, Hitachi Metals, Ltd. Nd-Fe-B 焼結磁石はその優れた磁気特性から幅広い用途で使われている。また、日立金属の特 徴的な磁石製品である NEOMAX 異方性リング磁石も車載,家電,FA 他さまざまなモーターに 使用されており、リング磁石の特徴を活かして高性能,低コストなモーター設計が可能となる。本 論文では、NEOMAX 異方性リング磁石の特徴,モーターへの適用効果の事例を示す。リング構 造でのメリットに加え,磁化配向に特徴をもつ極異方性リング磁石の適用により、ラジアル異方性 リング磁石対比,同等のモーター出力条件にて,磁石重量およびモーター軸長ともに 20%低減可 能であることをモーター解析検討で定量的に示した。

Sintered Nd-Fe-B magnets with superior magnetic characteristics have a variety of applications. One of our signature products, the NEOMAX anisotropic ring magnet, has found wide use in the automotive industry, in home appliances, and in FA. Ring magnets can also be used to produce highly efficient motors. In this paper, the features of the NEOMAX anisotropic ring magnet are introduced, and the results of a case study of its use in motors are described. It is shown that it is possible to reduce both the magnet weight and the motor length by 20% compared to a multipole radial ring magnet that has a distinctive magnetic orientation in addition to the advantage of ring structure.

Key Word: NEOMAX 異方性リング磁石,極異方性リング磁石,モーター
Production Code: NEOMAX 異方性リング磁石

R&D Stage : Research

1. 緒言

日立金属の特徴的な磁石製品である NEOMAX[®] 異方性 リング磁石は車載,家電,FA 他さまざまなモーターへ 適用されており,リング磁石の特徴を活かしたモーター 設計が可能となる。本論文では,NEOMAX 異方性リン グ磁石の特徴,モーターへの適用,設計事例および技術 動向を示す。

2. 異方性リング磁石の特徴

2.1 異方性リング磁石の磁化配向

NEOMAX 異方性リング磁石の磁化配向はラジアル異 方性および極異方性の2種類の磁化配向¹⁾が存在する。 図1に示す通り、ラジアル異方性の磁化配向は径方向の ラジアル配向となり磁極は着磁により決定される。また、 極異方性はハルバッハ配列の磁気回路構造となり、磁化 配向、磁極は磁石成形時に決定される。ハルバッハ配列 の磁気回路構造により、表面磁束密度波形は正弦波状と なる。加えて2.4 で後述する磁束密度ピーク値はラジア ル異方性より高いことも特徴である。

図 1 NEOMAX[®] 異方性リング磁石の磁化配向

Fig. 1 Magnetic field orientation of NEOMAX® anisotropic ring magnet

NEOMAX[®] 異方性リング磁石のモーターへの適用

2.2 異方性リング磁石の構造上のメリット

図2にリング磁石の構造上のメリットをセグメント磁石ローターの場合と比較して示す。リング磁石の構造上の最大のメリットは組立性が良いことである。例えば、8極の磁石ローターにおいてセグメント磁石を適用する場合, IPM (Interior Permanent Magnet)およびSPM (Surface Permanent Magnet)どちらの磁石ローターでも磁極の数と同じ個数の磁石を用意する必要があり、極数に伴い磁石ローターの部品点数も増加することとなる。一方、リング磁石の場合は極数によらずリング磁石1個にて磁石ローターを構成することが可能となり、部品点数の少ないシンプルな磁石ローター構造が実現可能である。

図 2 リング磁石の構造上のメリット Fig. 2 Structural advantages of ring magnet

2.3 ラジアル異方性リング磁石の磁極構造上のメリット

図3にラジアル異方性リング磁石の磁極構造上のメ リットを示す。セグメント磁石ローターの場合,通常, 磁石1個が1極となる着磁が施され,磁石個数に応じた 磁極数となることが一般的である。それに対し,ラジア ル異方性リング磁石ローターの場合は着磁器の極数に応 じた着磁が施されるため,例えば8極の着磁器で着磁を 行えば8極の磁石ローターとなり,10極の着磁器にて着 磁を行えば10極の磁石ローターを作製することができ, 異なる極数のローターの磁石部品を共通化することが可 能である。また,SPM 同期モーターにおいてコギングト ルク低減に有効な手段の一つであるスキュー着磁を着磁 器側の設計によって容易に実現可能であることもリング 磁石の大きなメリットである。セグメント磁石にてス キュー着磁と同様の手法を適用する場合,ステップス キュー構造となるが,例えば8極の2段ステップスキュー を構成しようとすると磁石個数は磁極数×段数となり16 個の磁石を用意する必要があり、部品点数および組立工 数が増加することとなる。磁石ローターにおいて、リン グ磁石を用いることでシンプルな構造および着磁自由度 が得られる。

図 3 ラジアル異方性リング磁石の磁極構造上のメリット Fig. 3 Advantages of radial ring magnet based on magnetic pole

2.4 極異方性リング磁石の特徴的な表面磁束密度波形

図4にリング磁石の表面磁束密度波形の例を示す。極 異方性リング磁石の表面磁束密度波形は正弦波状の波形 形状となることが特徴で、その正弦波状波形形状により モーターのコギングトルクおよびトルクリプルを効果的 に低減することが可能である²⁾。また、表面磁束密度波 形の面積を比較すると、一般的に極異方性リング磁石の 面積はラジアル異方性リング磁石よりも約20%大きく、 極異方性の磁化配向により多くの磁束を得られる³⁾。

図4 リング磁石の表面磁束密度波形

Fig. 4 Surface magnetic flux density for ring magnet

3. 極異方性リング磁石の適用効果

3.1 モーター誘導起電力向上

極異方性リング磁石をモーターへ適用することによ り、前述の表面磁束密度波形の特性によりモーター特性 を向上させることが可能である。図5にリング磁石を用 いた場合のモーターの誘導起電力の比較を示す。誘導起 電力では極異方性リング磁石の方がラジアル異方性リン グ磁石よりも約10%高く、極異方性の磁化配向により モーター特性を向上させることが可能となる。一方で モーター特性向上の効果はモーター構造にも依存し、ス テータ形状を特性の高い極異方性リング磁石に応じた形 状等の専用設計とすることでより多くの効果を得ること が期待できる。

図 5 リング磁石を用いたモーターの誘導起電力 Fig. 5 Induced voltage in ring magnet motor

3.2 極異方性リング磁石の樹脂インサート成形

極異方性リング磁石はそのハルバッハ配列の磁気回路 構造により内径側に漏れ磁束がない、つまり、内径側に 磁気回路を構成しなくてもよいことが特徴の一つである。 よって、セグメントおよびラジアル異方性リング磁石を 用いた磁石ローターでは必須となる磁石内径側の磁気回 路、ローターコアが不要となる。これにより、極異方性 リング磁石の場合、磁石内径側に非磁性の樹脂等を配置 することが可能となり、図6に示すような樹脂インサー ト成形により磁石ローターを作製することが可能となる。 樹脂インサート成形により、コスト面では磁石とローター コアおよびローターコアとシャフトの組立コスト、ロー ターコアのコストの削減が可能となり、さらに、磁石内 径の機械加工精度が不要となり磁石の内径加工レスによ る磁石コストの削減も可能となる。モーター特性面では 前述の極異方性リング磁石特有の表面磁束密度の正弦波 状波形形状の効果に加えて,磁石内径が樹脂となること によるローターの軽量化およびイナーシャ低減の効果が 期待できる。

図 6 極異方性リング磁石の樹脂インサート成形 Fig. 6 Resin insertion molding of multipole anisotropic ring magnet

4. リング磁石のモーターへの適用検討

4.1 モーター設計検討内容

ラジアル異方性リング磁石および極異方性リング磁石 を適用したモーターを設計し、モーター特性の比較を行っ た。今回は、リング磁石の外径を φ 14 mm とし、4 極、 6 極、8 極において極数に応じたステーターを設計しモー ター出力トルクを同一とする場合の磁石重量およびモー ター軸長を比較した。

4.2 モーター設計条件

検討モーターの電磁構成および磁石条件を表1に示す。 5 種類の電磁構成において、ラジアル異方性リング磁石 および極異方性リング磁石を適用する場合の磁石仕様を 設計した。磁石外径はφ14 mmとし、磁石内径はラジア ル異方性リング磁石の場合はφ10 mm、極異方性リング 磁石の場合はそれぞれの極数に応じた適切な内外径比に 基づき内径を設定した。今回の磁石形状では4極および 6 極において極異方性リング磁石の磁石内径がラジアル 異方性リング磁石の磁石内径よりも小さくなる。また、 ラジアル異方性リング磁石においてはそれぞれの電磁構 成のコギングトルク理論値に応じたスキュー着磁角度を 設定している。磁石の残留磁束密度は1.2 Tとし、ラジ アル異方性リング磁石の極間の無着磁領域の幅は1 mm と設定した。

8P9S

N/A

表1 モーター電磁構成および磁石設計条件 Table 1 Design specifications for motor and magnet

Radial ring magnet					Multipole anisotropic ring magnet						
Number of poles and slots		4P6S	6P9S	8P12S	8P6S	8P9S	4P6S	6P9S	8P12S	8P6S	
Outer diameter	[mm]	14					14				
Inner diameter	[mm]	10					8.5	9.5		10	
Number of poles	-	4	6		8		4	6		8	
Ratio of OD to ID	-	0.71					0.61	0.68	0.71		
Skew angle	[degree]	30	20	15	15	5	N/A	N/A	N/A	N/A	
Remanence Br	[T]	1.2					1.2				
Neutral area	[mm]	1					N/A				

次に、モーターの詳細設計条件を**表2**に、モーター解 析モデルを図7に示す。モーター外径は ϕ 35 mm、ティー ス磁東密度 1.2 ~ 1.4 Tとなるようティース幅を設計、 その他詳細モーター仕様も**表2**に示す通りで、モーター 軸長を調整し出力トルク 50 mN・m が得られるモーター を設計し、それぞれ磁石重量、モーター軸長を比較した。

表2 モーター設計条件

Table 2 Design conditions for motor

Outer diameter of motor	φ 35 [mm]			
Motor gap	0.5 [mm]			
Slot opening	1 [mm]			
Stator core material	35A300			
Shaft and rotor core material	S45C			
Current density	5 [A/mm²]			
Fill factor for coil winding	60 [%]			
Thickness of coil insulator	0.3 [mm]			
Output torque	50 [mN · m]			
Magnetic flux density of teeth	1.2-1.4 [T]			

図7 モーター解析モデル

Fig. 7 Motor simulation model

4.3 モーター設計結果

設計後のモーター概略形状を図8に示す。極異方性リ ング磁石の磁石磁束は、すべての電磁構成条件で設計仕

図8 モーター設計結果

Fig. 8 Motor design results

様よりも増加した。ティース内の飽和磁束密度の設計仕様は、1.4 T である。極異方性リング磁石のティース幅は、 設計仕様を満足させるため、ラジアル異方性リング磁石 のティース幅よりも大きくする必要がある。出力トルク の解析結果を図9に示す。すべての条件において出力ト ルク50 mN・m が得られており、同じ条件にて磁石重量 および磁石軸長を比較することができる。

まず,磁石重量の比較を図10に示す。4P6Sの電磁構 成以外はラジアル異方性リング磁石よりも極異方性リン グ磁石の方が磁石重量が少なく,極異方配向の効果によ り同じモーター特性にて磁石重量を削減することが可能 であることがわかる。但し、4P6Sの電磁構成では、4極 の極数にて適切な内外径比で設定したため、磁石の肉厚 が増加した。 次に、モーター軸長の比較を図 11 に示す。すべての電磁構成においてラジアル異方性リング磁石よりも極異方 性リング磁石の方がモーター軸長が短く、極異方性リン グ磁石の適用にてモーターの小型化が可能であることが 確認できる。図 12 にモーター軸長と磁石重量の比較グラ フを示す。今回の検討モデルの中では 8P6S の電磁構成 の場合、最も小型化が可能であり、極異方性リング磁石 を適用することでラジアル異方性リング磁石よりも 20% 磁石重量およびモーター軸長を少なくすることができた。 また、他の電磁構成においても、極異方性リング磁石の 適用にてモーターの小型化が可能であることを確認した。

図9 出力トルク解析結果

Fig. 9 Simulation results for output torque

図10 磁石重量の比較

Fig. 10 Comparison of magnet weight

図 11 モーター軸長の比較 Fig. 11 Comparison of motor length

図 12 モーター軸長と磁石重量 Fig. 12 Motor length and weight

NEOMAX[®]異方性リング磁石のモーターへの適用

5. 結言

本論文では、日立金属のリング磁石の特徴および応用 事例を示し、極異方性リング磁石の適用にてモーターの 小型化が可能であることを示した。今回、材料面での省 重希土類技術については触れなかったが、当該材料にお いても重希土類元素の削減には鋭意取り組んでおり、今 後各種用途で採用が拡大することを期待する。

引用文献

- 1) 日立金属(株): Permanent Magnets, HG-A27-H, 2018.4
- 2) 見城尚志 他:新・ブラシレスモーター,総合電子出版社, 2005.1
- H.Amano, et al.: Characteristics of a Permanent-Magnet Synchronous Motor with a Dual-Molding Permanent-Magnet Rotor, IEEE PES (2007), 07GM0361.

丸川 泰弘 Yasuhiro Marukawa 日立金属株式会社 磁性材料カンパニー 磁性材料研究所

久村 剛之 Tsuyoshi Hisamura 日立金属株式会社 磁性材料カンパニー 磁性材料研究所

天野 寿人 Hisato Amano 日立金属株式会社 磁性材料カンパニー 磁性材料研究所

蒲池 政直 Masanao Kamachi 日立金属株式会社 磁性材料カンパニー 熊谷磁材工場

吉田 健志 Takeshi Yoshida 日立金属株式会社 磁性材料カンパニー 熊谷磁材工場