The Group is striving to provide environmental value in each stage related to monozukuri. From the R\&D stage to the product lifecycle, we are developing products that contribute to decarbonation and reduction of energy use. With the aim of achieving carbon neutrality in production, we are expanding the deployment of renewable energy and promoting energy saving. And, at the stage of using the Group's products by our customers, we are providing environmental value that meets the demands of the times, such as environmentally-friendly products that reduce the use of energy and greenhouse-gas emissions.

Aiming to realize a decarbonized and energyefficient society throughout the product lifecycle

Major measures

- Promotion of sales of environmentally conscious products
- Promotion of decarbonation and energy conservation (for customers)
Examples of efforts
Neodymium magnets: Contributing
to popularization of xEVs
Amorphous alloys: Contributing to
Amergy efficiency of power transformers

$$
(\Rightarrow \text { p. 22) }
$$

Sales ratio of key environmentally conscious products 30\%

Reducing greenhouse-gas emissions during production of cathode materials

Lithium-ion batteries (LIBs) are used in a wide range of fields, from mobile devices to hybrid and electric vehicles, owing to their high energy density, compact size, and light weight, and demand for LIBs is expected to grow rapidly, especially for use in electric vehicles. The key component of LIBs is the cathode material, which assures LIBs have both high capacity and long life
We have developed (i) a technology that gives LIBs both longer life and higher capacity while reducing the amount of cobalt used in the cathode material and (ii) a manufacturing technology that increases the options for the raw materials composing the cathode. We have also developed microstructure-control technology" for suppressing degradation of the crystal structure of the cathode that accompanies the charge-discharge cycle. Moreover, the cobalt content, which is an essential major component of cathode materials, can be reduced by 80% (compared to hat our conventional cahodes). As a result, greenhousegas emissions derived from cobalt raw materials during manufacturing can be reduced.
-n the future, we will introduce these technologies as solutions for customers involved in mass production of cathode materials and development of LIBs.

Neodymium magnets contribute to the popularization of $x E V$ vehicles

In 1982, our company (Sumitomo Special Metals at that time) invented the neodymium magnet, which generates much stronger magnetic force than that of the common ferrite magnet. Generally, as the magnetic force of the magnet gets stronger, the performance of the motor gets higher, and the motor can be designed to be smaller and lighter. In particular, in regard to the technological evolution of XEVs^{*}, it plays an important role as an indispensable material enabling smaller, lighter, more-efficient, and more-energy-efficient motors.
As a permanent magnet boasting the world's-highest magnetic force, NEOMAX® is used in fields such as vehicles, IT and home appliances industry, medicine, and the environment and energy.
which is undergoing transformations to, for example beingotive field automated driving, and electrification. By providing high-performance neodymium magnets, we are contributing to production of higher efficiency and smaller drive motors and generators for xEVs .
*XEV: A collective term for electric venicles (EVS), hybrid electric venicles (HEVS), and plug-in "XEV: A o ollective term for electric vent
hybrid electric vehicles (PHEVs).

Amorphous alloy

 contributes to energy saving in power transformersElectricity generated at power plants incurs transmission loss while it is being transmitted to factories and homes. High-voltage electricity is being transmitted to factories and homes. High-voltage electric transformers for safe use; however, transformers not only consume powe during the power conversion but also lose power during standby. To solve that problem, since 2003, Hitachi Metals Group has provided Metglas®, namely, an amorphous alloy that reduces standby power consumption to about one-third that in the case of conventional core materials (such as electromagnetic steel sheets) used for transformers.
Unlike ordinary metals and alloys, amorphous alloys have no crystalline structure and exhibit excellent soft magnetic properties, and those features make it possible to suppress power loss in standby mode. By providing core materials for amorphous transformers, we aim to contribute to reducing CO_{2} emissions* by approximately 50,000 tons per year
(compared to the figure for conventional magnetic-steel transforme (compared to the figure for conventional magnetic-steel transformers). In which will contribute to further improving transformer efficiency.

Based on shipment volume and difference in transformer energy loss, according to Indian
standards. For the CO2 emission coefficient, we use IEA CO2 emissions from fuel combustion standards. For
(2017 word).

CO2 emissions compared to the case of emissions compared to the ca
conventional transformers

Reduction of approx 28,000 tons

2021
2030

